TABLE II

	HEAT CAPACITY OF ZIRCONIUM				THERMAL FUNCTIONS OF ZIRCONIUM				
	Mol. weight 91,22 g	g., 1.0204 mol	es		$C_p^{\mathfrak{g}}$.	<i>S</i> °.		$(H^0 - H^0_0)/T$.	$\frac{-(F^0 - F^0)}{H_0^0}$
Mean	Cp, cal, mole ⁻¹	Mean	cal. mole ⁻¹		cal.	cal.		cal.	cal.
T.°K.	deg. ⁻¹	T.°K.	deg. ⁻¹	°ĸ.	mole ⁻¹ deg. ⁻¹	mole -1 deg1	$H^{\circ} - H^{\circ}_{\circ}$ cal. mole ⁻¹	mole ⁻¹ deg. ⁻¹	tuole ⁻¹ deg. ⁻¹
14.38	0.095	142.59	5.215	14^a	0.090	0.030	0.31	0.022	0.008
16.51	. 150	149.94	5.299	25	0.489	0.169	3.16	. 126	.043
18.86	, 208	157.56	5.383	50	2.212	1.016	36.0	.720	. 296
20.93	.308	165.96	5.455	75	3.609	2.200	110.2	1,469	.730
23 , 06	. 405	173.99	5.510	100	4.460	3.362	211.7	2.117	1.245
25.46	. 522	183.07	5.579	125	4.986	4.421	330.5	2.644	1.776
27.98	. 647	191.77	5.646	150	5.299	5.359	459.3	3.062	2.297
81.07	. 839	199.90	5.704	175	5.525	6.193	594.8	3.399	2.795
34.07	1.050	208.14	5.739	200	5.691	6.942	735.1	3.675	3.267
37.55	1.321	215.00	5.784	225	5.824	7.621	879.1	3.907	3.714
41.43	1.611	221.10	5.813	250	5.918	8.240	1025.6	4.103	4.137
44.97	1.860	227.40	5.832	275	5.981	8.807	1174.5	4.271	4.536
48.52	2.108	234.19	5.836	298.16	6.012	9.292	1313.3	4.405	4.887
53.59	2.435	239.89	5.894	300	6.014	9.329	1324.4	4.415	4.914
58.91	2.799	245.00	5.869	^a Deb	ve T ³ ext r	apolation	below 14°K.	with θ eq	ual to 242.
64.62	3.122	250.43	5.912		-			-	
70.33	3.400	255.74	5.929	function are lower than those calculated from his					
76.04	3.647	261.35	5.963	data.					
82.86	3.920	265.96	5.967	Acknowledgments.—We wish to acknowledge					
89.22	4.129	270.30	5.989	the assistance of the United States Atomic Energy					
95.48	4.328	274.16	5.995				; available		
101.97	4.512	278.18	5.988				ed in this		
108.61	4.680	282.00	5.974	We particularly wish to acknowledge the as-					
115.03	4.814	286.07	5.991	sistance of Mr. Nathan C. Hallet, who gave as-					
122.09	4.943	290.11	6.000	sistance in the assembly and calibration of the					
128.70	5.035	293.81	6.006	calorimeter, and with the measurements.					
135.50	5.122	298.23	6.004	Colume	us 10, On	10	RECEIVED	Februar	ey 20, 1951

[CONTRIBUTION FROM THE CRYOGENIC LABORATORY AND THE DEPARTMENT OF CHEMISTRY, THE OHIO STATE UNIVERSITY]

Low Temperature Heat Capacities of Inorganic Solids. IX. Heat Capacity and Thermodynamic Properties of Cuprous Oxide from 14 to 300°K.¹

BY JIH-HENG HU AND HERRICK L. JOHNSTON

The heat capacities of cuprous oxide have been measured in the temperature range 14 to 300° K., and the derived thermodynamic functions have been calculated and tabulated at integral values of the temperature over this range. The entropy at 298.16°K, comes out 22.44 \pm 0.07 e.u. Our data gave no evidence of a transition between 14 and 303°K.

Introduction

TABLE 1

Pitzer and Smith^{2a} and Johnston and Weaver^{2b} found evidence for a second order transition in silver oxide in the neighborhood of 35° K. Since there was some reason to suspect that this transition might be associated with coöperative phenomena in the cuprite type of lattice that characterized Ag₂O it was thought desirable to measure the heat capacity of cuprite at low temperatures. The only previous measurements on Cu₂O at low temperatures were those of Millar³ who covered the temperature range 75–291°K.

Apparatus and Materials

The cuprous oxide used was obtained by precipitating a warm Fehling solution with dextrose. Af-

(I) This work was supported in part by the Office of Naval Research under contract with The Ohio State University Research Foundation. Paper VIII, THIS JOURNAL, **73**, 4549 (1951).

(2) (a) K. S. Pitzer and W. V. Smith, *ibid.*, **59**, 2633 (1937); (b) H. L. Johnston and C. E. Weaver, unpublished results.

(3) R. W. Millar, ibid., 51, 215 (1929).

ter it had been washed with CO_2 -free water, alcohol and ether, it was dried over calcium chloride in a vacuum desiccator. Its copper content was determined by electrolytic analysis. On the assumption that this entire copper content was derived from cuprous oxide, the sample contained 99.80% cuprous oxide. An X-ray diffraction pattern showed lattice constants characteristic of the cuprite lattice.

"Solid calorimeter No. 6" of the group of seven vacuum calorimeters described in the first paper⁴ of this series was filled with 112.282 g. (0.7844 mole) of cuprous oxide for heat capacity measurements.

Experimental Results

Experimental heat capacities are summarized in Table I. A large scale plot of our data gives no evidence of a transition between 14 and 303°K. Table II gives the heat capacity and derived thermodynamic functions for cuprous oxide at selected

(4) H. L. Johnston and E. C. Kerr, ibid., 72, 4733 (1950).

integral values of the temperature. The entropy at 298.16°K. is 22.44 e.u., of which 0.41 e.u. is con-

TABLE I					
Molar Heat Capacity of Cuprous Oxide					
Mol. wt. 143.14 g., 0.7844 mole					

Mean T. °K.	Cp. cal. mole ⁻¹ deg. ⁻¹	Mean T. °K.	Cp, cal. mole ⁻¹ deg. ⁻¹
14.72	0.697	88.31	8.952
16.47	0.864	94.28	9.254
18.99	1.156	101.73	9.575
21.31	1.472	109.75	9.856
23 , 49	1.793	116.62	10.12
25.22	2.073	124.00	10.39
26.00	2.190	131.66	10.70
28.22	2.567	138.81	10.97
28.75	2.642	145.42	11.21
30.53	2.960	153.63	11.48
31.31	3.087	160.73	11.73
32.84	3.359	166.88	11.92
35.70	3.879	174.06	12.15
38.89	4.419	181.20	12.37
40.87	4.695	187.89	12.57
42.72	5.007	194.89	12.78
$43 \ 39$	5.072	203.79	12.99
46.69	5.527	212.62	13.26
47.04	5.602	220.84	13.47
50.34	5.961	229.00	13.71
51.84	6.187	236.16	13.87
54.00	6.410	243.54	14.03
57.01	6.751	252.12	14.22
57.82	6.813	259.67	14.43
60.65	7.133	269.67	14.65
61.65	7.176	275.47	14.78
64.01	7.404	283.67	14.95
69.44	7.830	291.67	15.09
76.39	8.304	299.64	15.22
82.80	8.663		

tributed by extrapolation below 16° K. Millar³ reported a value of 21.7 ± 1.0 e.u., based on his own data from 75 to 291° K. and an extrapolation below 75° K.⁵

TABLE II

THERMODYNAMIC FUNCTIONS FOR CUPROUS OXIDE (H0 . _ (F* Hº - $(\widetilde{H_0^0})/T$ $H_0^{(0)}/T$.50 $C_{\rm p}$ H_0^0 cal. cal. cal. cal. mole -1 deg. -1 mole⁻¹ deg.⁻¹ mole⁻¹ deg.⁻¹ mole⁻¹ deg.⁻¹ cal. mole⁻¹ °K. 16 0.807 0.4065 4.3980.27490.13160.3293 252.0221,0014 16 803 0.6721505.9663.6809119.282.38561.29538.205 299.42756.5718 3.9923 2.57951009.485 9.1226 521.84 5.21843.904212510.452 11.345 771.30 6.17045.17515011.360 13.3321044.0 6.9600 6.37217512.180 15.1461338.57.6486 7.497 12.917 20016.8211652.38.2615 8.560 22513.58418.3811983.7 8.8164 9.565 25014.19719.8452331.1 9.3244 10.52114.75627521.2252693.1 9.7931 11.43215.21022.4363040.3 298 16 10.197 12.239300 15.242 22.530 3068.3 10.22812.302

Our estimate of the uncertainty in the entropy is ± 0.07 e.u., of which ± 0.04 e.u. is due to the uncertainty in the extrapolated portion below 16° K.

Acknowledgments.—We wish to acknowledge the assistance of Mr. Nathan C. Hallett in checking the experimental work and in giving assistance with some of the measurements. We are also indebted to Mr. Gordon B. Skinner for making the X-ray analyses.

(5) Millar's cuprous oxide was prepared by heating pure cupric oxide under reduced pressure at 1000° .

Columbus 10, Ohio Received February 20, 1951

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, POMONA COLLEGE]

Adsorption of Water by Carbon¹

BY CONWAY PIERCE, R. NELSON SMITH, J. W. WILEY AND H. CORDES

Water isotherms are given for porous and non-porous carbons. A non-porous carbon adsorbs little water, as compared with other vapors, but activated charcoals hold nearly the same liquid volume of water as of other vapors. The net heat appears to be zero for the initial adsorption of water, then as more molecules are adsorbed the net heat becomes positive. This effect is ascribed to the contribution of lateral interactions with previously adsorbed molecules. At elevated temperatures the initial net heat of adsorption appears to have a large negative value, but it is shown that this effect may be due to a reaction of carbon with water which may occur slowly even at room temperature. Hydrogen and carbon dioxide are produced in the reaction and some of the oxygen is held as a surface complex, which increases the surface affinity for water. An upturn in a water isotherm below $0.95p_0$ appears to be associated with the presence of capillaries. Water isotherms are used to detect capillaries in certain carbon blacks.

During the past thirty years many isotherms have been reported for adsorption of water vapor by activated charcoal, but comparatively little work has been done with non-porous carbon. The isotherms of charcoals show a variety of forms and there is little correlation of the charcoal data with those for non-porous surfaces. The work herein reported has been done with samples of both porous and non-porous carbons for which the isotherms

(1) This is a progress report of work done under Contract N8 onr 54700 with the Office of Naval Research.

for other adsorbates are known, with the hope of gaining a better understanding of the factors which make water adsorption unlike that of other vapors.

Water adsorption studies prior to 1946 have been reviewed by Emmett.² The most extensive work since this review is that done by Wiig and Juhola,^{8a.b} and by Harkins, Jura and associates.^{8c.d}

(2) P. H. Emmett. Chem. Revs., 43, 69 (1948).

(3) (a) E. O. Wiig and A. J. Juhola, THIS JOURNAL, 71, 561 (1949);
(b) A. J. Juhola and E. O. Wiig, *ibid.*, 71, 2069, 2078 (1949);
(c) W. D. Harkins, G. Jura and E. H. Loeser, *ibid.*, 68, 554 (1946);
(d) P. R. Basford, G. Jura and W. D. Harkins, *ibid.*, 70, 1444 (1918).